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Series Editors’ Foreword

The series Advances in Industrial Control aims to report and encourage technol-
ogy transfer in control engineering. The rapid development of control technology
has an impact on all areas of the control discipline. New theory, new controllers,
actuators, sensors, new industrial processes, computer methods, new applications,
new philosophies. .., new challenges. Much of this development work resides in in-
dustrial reports, feasibility study papers and the reports of advanced collaborative
projects. The series offers an opportunity for researchers to present an extended ex-
position of such new work in all aspects of industrial control for wider and rapid
dissemination.

Applications arising from moving vehicles and robotic arms that have in common
a requirement to follow a path invariably involve co-ordinate systems and are de-
scribed by nonlinear system models. Motivated by these common practical and the-
oretical issues, Béla Lantos and Lérinc Marton have pursued an interesting agenda
of generic unification, drawing together a modelling framework for describing these
types of systems and then investigating the many concomitant control and appli-
cations issues. Their results are comprehensively presented in this new monograph
Nonlinear Control of Vehicles and Robots for the Advances in Industrial Control
series.

As might be expected from such a globally-oriented approach to nonlinear con-
trol systems, the authors pursue a variety of themes and readers from differing back-
grounds will be interested in following different concepts as they read the mono-
graph; however, to gain a perspective on the monograph’s contents, two themes are
considered in this Foreword, applications and control techniques.

The range of applications that the authors seek to model, analyse, and control
within a unified framework is wide, and interesting, and includes:

e Robotic-arm systems—both multi-link and SCARA systems
Automobiles—ground travel

Fixed-wing aircraft—aerial travel

Helicopters — indoor quad-rotorcraft

Marine vessels—surface ships
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o Underwater vessels—underwater autonomous vehicles and
e Control of formations of different vehicle types

The monograph also presents some specific nonlinear system issues for mechan-
ical systems, and the reports of this work include:

e Studies of friction—static and dynamic models; and
e Studies of backlash—models and compensation

The theme of unified modelling for a wide range of vehicular and robotic sys-
tems is complemented by a second theme of nonlinear control systems design. The
approach taken is similar to a toolbox approach, for the authors describe a range
of nonlinear system control techniques and then demonstrate their use on the wide
range of applications given above. Each nonlinear control method is selected for a
particular application according to its appropriateness for that system. The suite of
nonlinear control system methods includes:

Nonlinear system stability methods
Input-output linearization

Flatness control

Sliding -mode control; and
Receding-horizon control

To support the development of the physical system modelling there is an ap-
pendix on the kinematics and dynamic-modelling fundamentals, and for the nonlin-
ear control, there is an appendix on differential geometry that presents Lie algebra
topics and discusses other subjects related to nonlinear systems.

The relevance of nonlinear control methods for industrial applications is grow-
ing. The first applications are destined to occur where there really is no alternative as
in path following vehicular and robotic applications. Feasibility studies of the poten-
tial benefits for systems that are complex and require high control performance will
also aid the penetration of these techniques into other industrial fields. The project
of Béla Lantos and Lérinc Marton in unifying models across a range of application
areas and the use of a portfolio of nonlinear control methods is likely to be attractive
to a wide range of readers. Typically, these will range from the industrial engineer
seeking ways of to enhance existing process control performance to the control the-
orist and the control postgraduate interested in making nonlinear control accessible
and usable.

The Series Editors are pleased to welcome this entry among a growing number
of Advances in Industrial Control monographs in the nonlinear systems and nonlin-
ear control field. Other recent entries in this field that might interest the reader in-
clude Tandem Cold Metal Rolling Mill Control: Using Practical Advanced Methods
(ISBN 978-0-85729-066-3, 2010) by John Pittner and Marwan A Simaan; Induc-
tion Motors (ISBN 978-1-84996-283-4, 2010) by Riccardo Marino, Patrizio Tomei
and Cristiano M. Verrelli; Detection and Diagnosis of Stiction in Control Loops:
State of the Art and Advanced Methods (ISBN 978-1-84882-774-5, 2010) edited by
Mohieddine Jelali and Biao Huang and Control of Ships and Underwater Vehicles:
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Design for Underactuated and Nonlinear Marine Systems (ISBN 978-1-84882-729-
5, 2009) by Khac Duc Do and Jie Pan.

Industrial Control Centre M.J. Grimble
Glasgow M.A. Johnson
Scotland, UK



Preface

Control techniques are indispensable in the design of robots and modern vehicles.
Using feedback control the safety and efficiency of these mechanical systems can
considerably be improved. In order to achieve good control performances, the math-
ematical model of the controlled mechanical system has to be taken into considera-
tion during control algorithm design. The dynamic model of vehicles and robots are
nonlinear.

First the book briefly outlines the most important nonlinear control algorithms
that can be applied for the control of mechanical systems. The very first requirement
of each control system is the closed loop stability. It is why the stability analysis
methods for nonlinear systems are presented in detail. Basic nonlinear control meth-
ods (feedback linearization, backstepping, sliding control, receding horizon control)
that can be applied for mechanical systems are also reviewed.

For efficient controller design it is inevitable the knowledge of the dynamic
model of controlled mechanical system. A framework for the modeling of vehi-
cles and robots are introduced. Staring from the dynamic model of rigid bodies, the
mechanical model of robotic manipulators, ground, aerial and marine vehicles are
presented. The nonlinear effects that appear in the model of different mechanical
systems are discussed.

The control of robots and different type of vehicles are discussed in separate
chapters. The model based tracking control of robotic manipulators is addressed in
different approaches. Firstly it is assumed that the parameters of the mathematical
model of the robotic system are known. For such systems the classical robot control
methods are presented such as cascade control, nonlinear decoupling and hybrid
position/force control. For the control of robots with unknown parameters selftuning
adaptive control is proposed. If the robot prescribed path include sharp corners,
backstepping control techniques are suggested.

The ground vehicles generally move in unknown environment with stationary or
moving obstacles. Some control algorithms are proposed for these systems that take
into consideration the static and dynamic obstacles based on input—output lineariza-
tion and receding horizon control techniques.

Xiii
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Receding horizon control is also applied for the control of aircrafts. This con-
trol algorithm is extended with a robust disturbance observer. For the control of a
quadrotor helicopter, backstepping control techniques are applied.

For nonlinear ship control the acceleration feedback can be combined with non-
linear PID control. Adaptive control techniques can be applied for ships with un-
known parameters. The control of 6 degree of freedom ships is solved using back-
stepping control techniques.

For simultaneous control of a group of vehicles, formation control techniques
can to be applied. In this work two approaches are suggested for vehicles that move
on a surface: potential field method and passivity theory.

Non-smooth nonlinearities such as friction and backlash severely influence the
control performances of mechanical systems. To solve the problem of friction com-
pensation and identification in robotic systems, efficient friction modeling tech-
niques are necessary. A piecewise linearly parameterized model is introduced to de-
scribe the frictional phenomenon in mechanical control system. The behavior of the
control systems with Stribeck friction and backlash is analyzed in a hybrid system
approach. Prediction and analysis methods for friction and backlash generated limit
cycles are also presented. A friction identification method is introduced that can be
applied for robotic manipulators driven by electrical motors and for hydraulic actu-
ators as well. The piecewise linear friction model is also applied for robust adaptive
friction and payload compensation in robotic manipulators.

The appendixes of the book are important for understanding other chapters. The
kinematic and dynamic foundations of physical systems and the basis of differential
geometry for control problems are presented. Readers who are familiar with these
fundamentals may overstep the appendixes.

The reader of this book will become familiar with the modern control algorithms
and advanced modeling techniques of the most common mechatronic systems: ve-
hicles and robots. The examples that are included in the book will help the reader to
apply the presented control and modeling techniques in their research and develop-
ment work.

Budapest Béla Lantos
Targu Mures (Marosvéasarhely) Lérinc Marton
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List of Abbreviations

(BM) Backlash Mode

(CM) Contact Mode

2D Two Dimensional

3D Three Dimensional

BLDC Brushless Direct Current
CAN  Controller Area Network
CAS  Collision Avoidance System
CB Center of Buoyancy

CCD  Charge Coupled Device
COG  Center Of Gravity

CPU  Central Processing Unit
DAC  Digital Analogue Converter
DC Direct Current

DFP Davidon Fletcher Power
DGA  Direct Geometric Approach
DH Denavit Hartenberg

DOF  Degree Of Freedom

DSC  Digital Signal Controller
DSP  Digital Signal Processor
ECEF Earth Centered Earth Fixed
ECI Earth Centered Inertial
EKF  Extended Kalman Filter
emf Electromotoric Force
FSTAB Formation Stabilizing Controller
GAS  Globally Asymptotically Stable
GMS  Generalized Maxwell Slip
HLC  High Level Controller

IMU  Inertial Measurement Unit
ISS Input to State Stability

LLC

Low Level Controller
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LMI  Linear Matrix Inequality

LOS  Line of Sight

LQ Linear Quadratic

LS Least Square

LTI Linear Time Invariant

LTV  Linear Time Varying

MIMO Multiple Input Multiple Output

NED  North East Down

PC Personal Computer

PD Proportional Derivative

PI Proportional Integrative

PID Proportional Integral Derivative

PM Pierson Moskowitz

PWM  Pulse Width Modulation

QP Quadratic Programming

RHC  Receding Horizon Control

RPM  Rotation Per Minute

RPY  Roll Pitch Jaw

RTW  Real-Time Workshop

SI International System

SISO  Single Input Single Output

SPI Serial Peripheral Interface

TCP Tool Center Point

UAV  Unmanned Aerial Vehicle

UGAS Uniformly Globally Asymptotically Stable

UGS  Uniformly Globally Stable

UGV  Unmanned Ground Vehicle

UMV  Unmanned Marine Vehicle

wb without bias

wfg with finite gain

List of Notations

= it follows

& if and only if

S element of

¢ not element of

> partial ordering
a:=b a is defined by b

0 null element of linear space
A = {a : properties of a} definitions of set A
N set intersection

U set union

Al internal points of set A
A closure of set A
(A), co(A) convex hull of set A
(A),co(A) closed convex hull of set A
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AJ_
AxB={(x,y):xe€A, ye B}
R'.R

c',.c

R™, C"

F:A— B

D(F)

kernel(F), ker(F)
range(F), R(F)
sin(a), Sy

cos(a), Cy
tan(w), Ty
atan(x), arctan(x)
sgn(x), sign(x)
sat(x)

F(,y)
F(y)oG(x)
2,2=12

[ax]

[a ob]

diag(a, b, c, ...)
rank(A)

det(A)

trace(A)
Span{a, b, c, ...}
A=UxvT
A=0R

A+

lx

llxl

(X, F)
(E,II'D
(H,{,-)
(f.8)
C"0,T]
Cc™[0, T]

XXV

orthogonal complement of subspace A
direct product of sets A and B

set of real numbers

set of complex numbers

real or complex Euclidean space
mapping (function) F from A to B
domain of F

kernel (null) space of F

range space of F

sine function

cosine function

tangent function

inverse tangent function

signum function

saturation function

function F(x, y) for fixed y
composition F (G (x)) of functions
complex number and its conjugate
linear mappings

identity mapping

vectors

matrices

identity matrix

transpose of a real matrix or vector
scalar (inner) product of a and b
vector product of a and b

dyadic product of a and b

matrix of vector product belonging to a
matrix a bT of dyadic product
diagonal matrix

rank of matrix A

determinant of matrix A

trace of matrix A

space spanned by a, b, c, ...
singular value decomposition of A
QR decomposition of matrix A
Moore—Penrose pseudoinverse of A
absolute value of x

norm of x

linear space over field F

linear normed space, Banach space
Hilbert space

scalar (inner) product in Hilbert space
space of continuous functions in R"
n-times differentiable functions



XXVi

C ()

L’[’,[O, T]

L% [0, T]
L(E| — E»)
K(E1 — Ej)
A*
J10), £ (x)
F(s)=L{f (@)}
F(z) = Z{ fx}
173
q.9
G(g), H(¢), H™'(9)

3

E§

x(t) =x(t, w)

Ry (T)

Ryx(T)

(ny(a))

Dy ()

xeR" ueR" yeRP
x(t) =@, v, x,u())

() =g, x(1), u(t))

x(1) = f (&, x (1), u(r))
x(t)=A@)x@) + B()u(t)
y(@)=C@x@) + D@)u(?)
d(t, 1)

X =Ax+ Bu

y=Cx+ Du

oAl

G(s), H(s)

P,z

Xi+1 = Ax; + Bu;

Xiy1 =Px; +T'u;

D(z)
M.=[B,AB,...,A""!B]

1

M, =[CT,ATCT,... (ATy—1cT|"

u=—Kx
X=F%+Gy+Hu

Xi =FXi_1+Gy;+ Hui_
y) =" ()0

Pt

P(t)=[X N (i) ()]

e(t) = y(t) — T (D — 1)

Nomenclature

space of smooth functions

in p-norm integrable functions in R"
essentially bounded functions in R”
space of linear mappings

space of bounded linear mappings
adjoint operator in Hilbert space
gradient and Hess matrix

Laplace transform

Z transform

space of infinite sequences

shift operators

stable (bounded) operators over I
random variable

expectation (mean) value

stochastic process

cross-covariance function
auto-covariance function
cross-spectral density

power spectral density

state, input signal, output signal
state transition function

output mapping

state equation of nonlinear system
state equation of linear system
output mapping of linear system
fundamental matrix of linear system
state equation of LTI system

output of LTI system

exponential matrix

transfer functions of LTI systems
pole, zero

discrete time linear time invariant system
sampled continuous time linear system
discrete time transfer function
controllability matrix of linear system

observability matrix of linear system
linear state feedback

linear state observer

actual linear state observer

linear parameter estimation problem
estimate of ¥

estimation error of ¥

matrix playing role in parameter
estimation

residual



Nomenclature

(1) =0 — 1)+ P()e(1)e(r)

<>

n O
=
|
o

1
Tk, .k, T12
Ak, Ky A2
PK,Ky> P12
Rot(z, ¢)
.0, ¥
q=(s,w)
g=(s,—w)
q1*q2
v,a
w, &
qi
Cn, S12
I‘ldi_l’n tl—]
m
J(q)
Pe
L, Ly, ...
LI,
H(q), M(q)
F,t

9 a
Lrg=4tf — e =1f.g]
8=t
Lih=fT (3" +h
ad'g =[f,ad' g

McCX
™,

XX Vil

recursive parameter estimation
kinetic energy

potential energy

Lagrange function

Gibbs function

coordinate system, frame
homogeneous transformation
orientation

position

rotation around z by angle ¢

Euler angles, RPY-angles
quaternion, s € R, weR3
conjugate of quaternion g = (s, w)
quaternion product

velocity, acceleration

angular velocity, angular acceleration
generalized coordinate, joint variable
cos(q1 + q2), sin(g1 + q2)

partial velocity, partial angular velocity
mass

Jacobian of physical system

center of mass

inertia moments

inertia matrix

generalized inertia matrix

force, torque

friction generated force and torque

Jacobian of vector—vector function
vector field over X, X is open, f € C*
set of vector fields over X

set of smooth functions a : X — R!
space of row vectors (covectors)

form (covector field) over X, h € C(*)
set of forms (covector fields) over X
nonlinear coordinate transformation
integral curve, x(t) = f(x(?)), x(0) = xo
gradient of a € S(X)

Lie derivative of a; a € S(X), f € V(X)
Lie derivative (bracket) of g; f, g € V(X)
Lie derivative of h; h € F(X), f € V(X)
ad-operator, ad(}g =g, ad}g =[f gl
etc.

submanifold

tangent space of submanifold M
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A x> LF(x) A(x) = Span{f1(x), ..., fr(x)}
x=fx)+ Yo gi(u; affine nonlinear system, f, g; € V (x)
Span{adffg j:1<j<m,0<i<n— 1} reachability distribution

r=1,. . m) relative degree vector

u=_S""! x)(—g(x)+v) linearizing static feedback, det S(x) # 0

z=PBx,z,v), u=a(x,z,v) endogenous state feedback



	Series Editors' Foreword
	Preface
	Acknowledgements
	Contents
	Nomenclature

